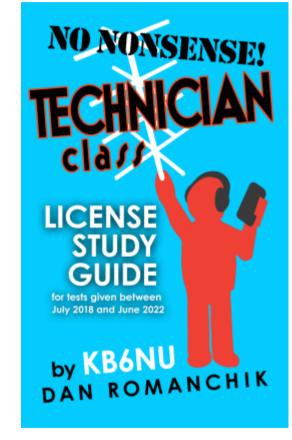
Amateur Radio Technician Class Training (Question Pool July 2018 – June 2022)

Slideset created by Alan Wolke, W2AEW Permission granted for use by the MORE Project

Based on the No-Nonsense Technician Class Study Guide by Dan Romanchik, KB6NU

Updates by Rebecca Mercuri, Ph.D., K3RPM

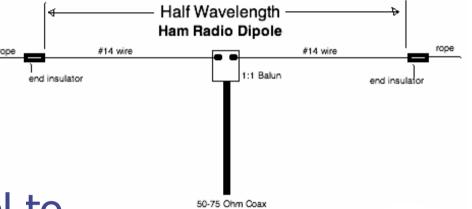

AMATEUR RADIO DIGITAL COMMUNICATIONS

Welcome to Session 3

Any Questions Before We Start?

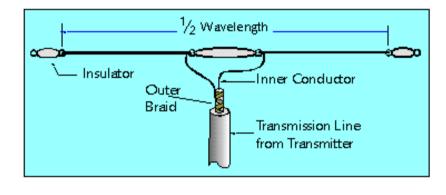
Agenda

- Introduction
- Electrical Principles (EP)
- Electronic Components and Circuits (ECCD)
- Radio Wave Characteristics (RWC)
- Antennas and Feed Lines (AFL)
- Amateur Radio Signals (ARS)
- Electrical Safety (ES)
- Radio Practices and Station Setup (RPSS)
- Station Equipment (SE)
- Operating Procedures (OP)
- Rules and Regulations (RR)



Antennas & Feedlines (AFL)

- Types & Polarization
- Feedlines & Connectors
- SWR & Measurements

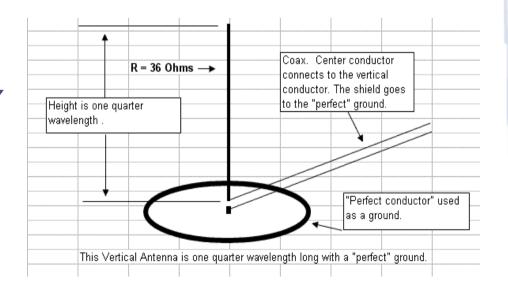

Antennas & Feedlines

- Most Common:
 Half-wave dipole
- Horizontally *polarized* when mounted parallel to earth
- Radiation is broadside to antenna

Antennas & Feedlines 1 of 14

Half-Wave Dipole Details

dipole antenna


- About 5% shorter than free-space halfwavelength
- Example: a *6m* dipole is about *112*["] long
- To make it *resonant* on a *higher* frequency, you would *shorten* it
- L(ft) = 468 / F(MHz)

Antennas & Feedlines 2 of 14

Vertical Antennas

- Typically 1/4 wavelength tall
- Vertically polarized, meaning the electric field is perpendicular to the earth
- A 2m vertical is ~19" long
- L(ft) = 234 / F(MHz)

Antennas & Feedlines 3 of 14

HF Antennas

- Can be very long!
- Loading is often used to physically shorten an antenna

Inductors (in series with radiating element)

Capacitors

 Loaded antenna not as efficient as full size

6		2	
N U U U U		A A A A	
0000		C C C C	
0		C)
	h		

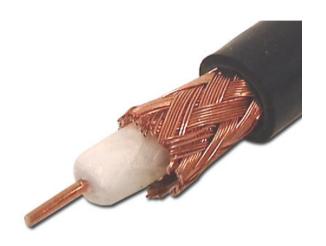
Beam Antennas

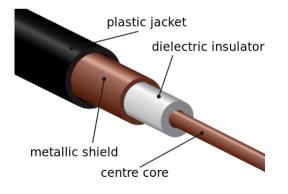
- Concentrates energy in one direction
- *Quad, Yagi* and *Dish* are all **directional** antennas
- **Gain** is the increase in signal strength w.r.t. a reference antenna

Antennas & Feedlines 5 of 14

"Rubber Duck" Antenna

- Flexible antenna on most handheld transceivers (HTs)
- *Disadvantage:* not as efficient as a full sized antenna
- Good reason **not** to use in a car is that the signals will be much **weaker** as compared to outside the vehicle




A properly mounted 5/8-wavelength antenna provides lower radiation angle and more gain than 1/4 wavelength antenna for mobile use

Antennas & Feedlines 6 of 14

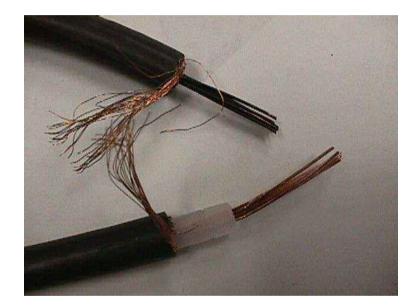
Feedlines

- **Coaxial** cable is used most often because
 - It is easy to use
 - Requires few special installation considerations
- Mainly used to *carry RF* between *radio* and *antenna*
- **Loss** in cable increases as frequency increases
- **Impedance** of feedline ideally matches the impedance of the transmitter and antenna – most common is **50 ohms**

Antennas & Feedlines 7 of 14

Common Coax Types

- **RG-58** and **RG-8** are the most common
- *Both* are 50 ohms
- RG-58 is thinner, but higher loss that RG-8
- Coax with lowest loss for VHF and UHF is air-insulated hardline



Antennas & Feedlines 8 of 14

Common Coax Failure Modes

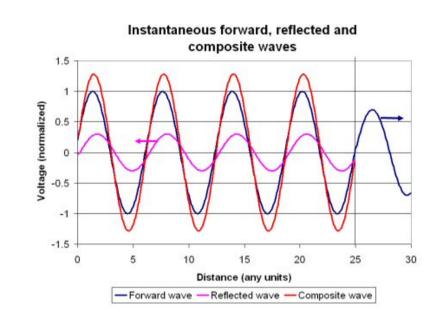
- Moisture contamination
 Cracks in jacket
 Around connections
- Jacket needs to be UV resistant to prevent cracking
- Air-Core coax requires special techniques to prevent water absorption

Antennas & Feedlines 9 of 14

Common Coax Failure Modes

- PL-259 is most common for HF frequency use
- PL-259 is <u>not</u> the most suitable at higher frequencies
- **Type-N** connector is most suitable above 400MHz
- Take care to *seal against water intrusion* to prevent increase in feedline loss
- Keep 'em tight loose connections can cause erratic SWR readings

Antennas & Feedlines 10 of 14


Standing Wave Ratio (SWR)

- A measure of how well matched a *load* is to the *transmission line*
- Low SWR needed with coax feedlines:

Efficient power transfer

Minimize losses

 Power *lost* in a feedline is converted to **heat**

Antennas & Feedlines 11 of 14

SWR Measurement

- SWR is measured with an SWR meter
- SWR meter is connected between the *transmitter* and *feedline*
- A **Directional Wattmeter** can also be used to determine if a feedline and antenna are matched properly
- SWR of 1 to 1, or 1.0:1 is a perfect match
- SWR of 2:1 or more is where *protection circuits* in most solid-state transmitters will *reduce power to protect output transistors*
- SWR of 4:1 means there is a large impedance mismatch
- An antenna tuner is used to match the antenna system impedance to the transmitter

Antennas & Feedlines 12 of 14

More Measurements

- An antenna analyzer is commonly used to measure: SWR
 Antenna resonant frequency
 Capacitance
 - Inductance

Antennas & Feedlines 13 of 14

Dummy Load

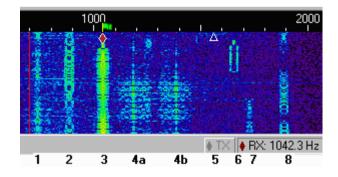
- A Dummy Load is just a big 50Ω resistor
- Used to prevent putting signal on the air when testing
- It is a *non-inductive resistor* and a *heat sink*

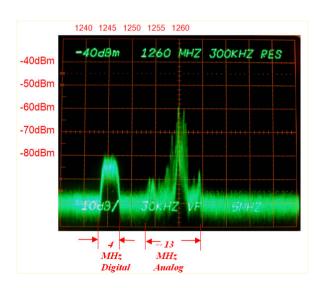
Antennas & Feedlines 14 of 14

Antennas & Feedlines Chapter End

Questions?

Let's Practice for the Exam!

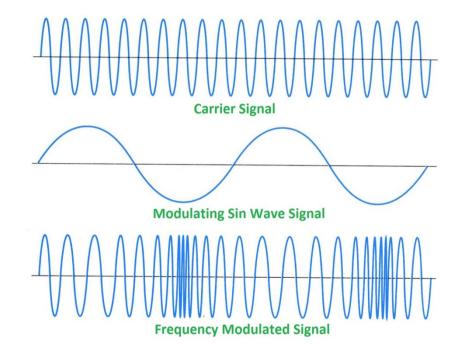

Amateur Radio Signals (ARS)


- Modulation & Bandwidth
- Digital Modes

Amateur Radio Signals

Modulation Modes

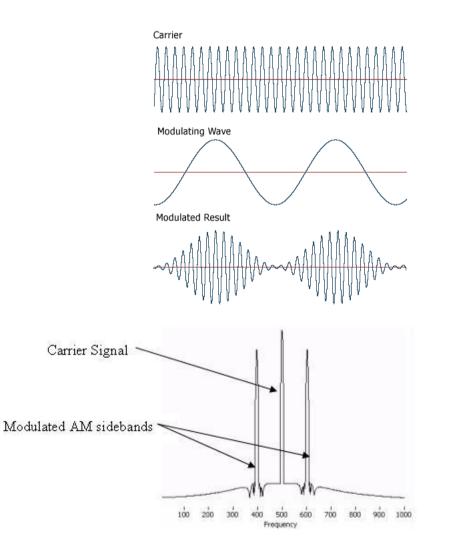
Signal Bandwidth



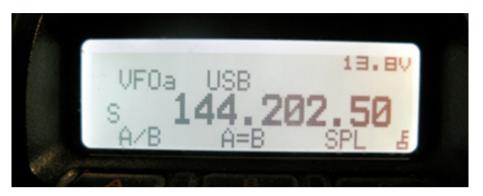
Amateur Radio Signals 1 of 14

Signal

Modulation Modes: FM

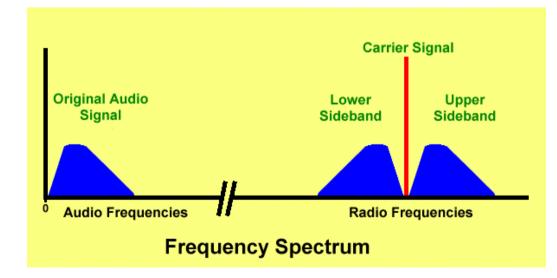

- **FM** is <u>Frequency</u> <u>Modulation</u>
- Most common on *VHF and UHF voice* repeaters
- Also used for VHF packet radio transmissions

Amateur Radio Signals 2 of 14


Modulation Modes: AM

- AM is <u>Amplitude</u>
 <u>Modulation</u>
- AM is one of the simplest modulation modes
- The *amplitude* (size) of the RF carrier is varied
- Energy is present at the carrier frequency and in sidebands on either side of the carrier

Amateur Radio Signals 3 of 14


Single Sideband (SSB)

- **SSB** is a form of *Amplitude Modulation*
- Used for *long distance* and *weak-signal* contacts on *VHF* & *UHF*
- May be Upper or Lower (USB or LSB)
- USB used for 10m HF, and VHF & UHF

SSB Properties

- Advantage:
 narrower bandwidth vs. FM for voice
- Typically ~*3kHz for SSB* vs. 5-15kHz for FM

Amateur Radio Signals 5 of 14

Continuous Wave (CW) Mode

Narrowest bandwidth (not really) about **150Hz**

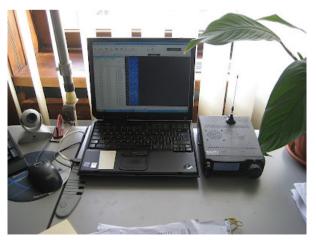
International Morse Code is commonly used by Hams CW can be sent using: Straight Key Electronic Keyer Computer Keyboard

Internationa	I Morse Code
- 1 dash = 3 dots.	
- The space between par	rts of the same letter = 1 dot.
- The space between lett	
- The space between wo	rds = 7 dots.
A • 🚥	V • • • • •
B 🗰 🛛 🕶 🗸	
C — • — •	× ••••
D — • •	Y — • — —
E•	Z 🗰 🗰 🔸 🗸
F • • • • •	• • • • • •
G 🗰 🗰 •	
H • • • •	? • • • • • •
	/
J • 🚥 🚥 🚥	@• = • = •
К 🔳 • 🔳	1 • • • • • • • • • • • • • • • • • • •
L • 🚥 • •	2 • • • • • •
M 💻 💻	3 • • • • • •
N 🔳 •	4 • • • • •
0	5 • • • • •
₽●■■●	6 🛲 • • • •
	7 - • • • •
R • 🔳 •	8 🛲 🛲 🕶 • •
S • • •	9 🚥 🚥 🚥 🐽
Т	0
U • • 🚥	

Amateur Radio Signals 6 of 14

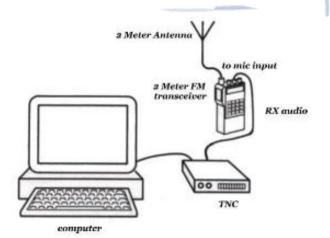
Amateur Television Modes

- TV signals can be sent in slow-scan and fast-scan modes.
- Analog fast-scan TV on 70cm band occupies 6MHz of bandwidth
- **NTSC** refers to the encoding type of analog fast scan color TV signal transmission


Amateur Radio Signals 7 of 14

Digital Modes

- Usually uses a computer and radio to communicate
- Data (not voice) is sent back and forth
- Technician Class can use
 Digital transmission on
 219-220MHz
- Some digital modes include **parity** – an extra code element used to detect errors in reception


Examples of Digital Modes:

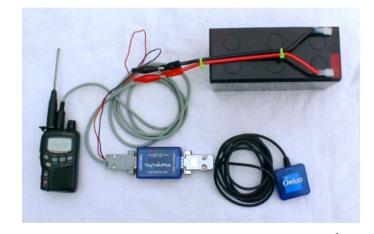
- Packet
- IEEE 802.11
- *JT65*
- PSK31
- MFSK

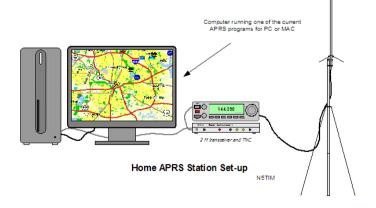
Amateur Radio Signals 8 of 14

Packet Radio

- One of the first digital modes
- Data grouped and sent in "packets"
- Packet radio includes:

A check sum which permits error detection


A header containing call sign of recipient


Automatic Repeat Request (ARQ) in case of an error

APRS

- Automatic Packet Reporting System
- Uses Packet radio
- A GPS (Global Positioning System) receiver is used when sending position reports
- Real-time tactical digital communications along with Map showing location of stations

Amateur Radio Signals 10 of 14

Phase Shift Keying (PSK)

- A digital modulation process that conveys data by changing the phase of the carrier wave
- Popular in HF band
- **PSK31** has *lowrate data transmission*

Call CQ Cal			_		Name	T/R	Mark	~	
Calt Name	QTH:		Rec'd	Contraction of the local distance of the loc	Band:	Notes:			U
T1BQH Carlos	Portu	igai			15m 💌	TARA Ru	Imble Cor	viest	_
									-
	100			T	2000 .		1.1		300
					2000				

Amateur Radio Signals 11 of 14

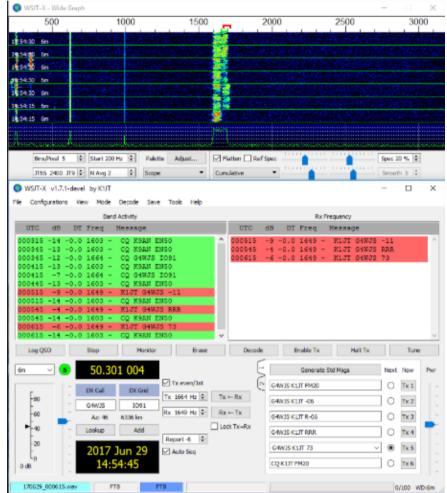
Digital Mobile Radio (DMR)

• FM Digital communications *Multiplexes two signals on a single* 12.5kHz channel

Talk Groups

Virtual channel – only heard by group of users in the channel

You *program* a **Group ID** into your radio to *join* the group


Amateur Radio Signals 12 of 14

Weak Signal Modes

• WSJT

Weak Signal Joe Taylor Slow transmission Many applications: *Moonbounce (EME) Propagation beacons Meteor Scatter*

• **FT8** is a weak signal that transmits on 15-second intervals

Amateur Radio Signals 13 of 14

Mesh Networking

 Uses WiFi frequencies in 2.4, 3.4 and 5.8GHz amateur bands

Broadband-Hamnet

AREDN: Amateur Radio Emergency Data Network

• Uses *WiFi hardware* with *modified firmware*

Broadband-HamnetTM

HSMM-MESH"

Amateur Radio Signals 14 of 14

Amateur Radio Signals Chapter End

Questions?

Let's Practice for the Exam!