Amateur Radio Technician Class Training

Slideset created by Alan Wolke, W2AEW Permission granted for use by the MORE Project

Based on the No-Nonsense Technician Class Study Guide by Dan Romanchik, KB6NU

Updates by Rebecca Mercuri, Ph.D., K3RPM

Welcome to Session 4

Any Questions Before We Start?

Agenda

- Introduction
- Radio Wave Characteristics (RWC)
- Electronic Components and Circuits (ECCD)
- Electrical Principles (EP)
- Antennas and Feed Lines (AFL)
- Amateur Radio Signals (ARS)
- Electrical Safety (ES)
- Radio Practices and Station Setup (RPSS)
- Station Equipment (SE)
- Operating Procedures (OP)
- Rules and Regulations (RR)

Electrical Safety (ES)

- Hazards & Grounding
- Antenna & Tower Safety
- RF Hazards & Radiation

Safety Concepts

- AC Power
- Hazardous Voltages
- Fuses
- Circuit Breakers
- Battery Safety
- Antennas & Towers
- Power Lines
- RF Safety

Safety Concepts 1 of 14

General Electrical Safety

- Easy to come in contact with dangerous voltages
- 30 Volts or more can result in dangerous shock
- **100mA** flowing through body can cause death

How does current flowing in the body cause harm?

- Heating tissue
- Disrupts electrical function of cells
- Involuntary muscle contractions

Safety Concepts 2 of 14

AC Power Safety

- 3-wire outlets and plugs are safer than 2-wire
- 3rd wire is a **Safety Ground** (aka Equipment Ground)
- Safety Ground is often connected with a green wire
- Building or room outlets may not be properly grounded (check!)

- Good ways to guard against electric shock:
 - Use 3-wire cords & plugs for all AC eqpt.
 - *Connect all AC powered eqpt. to a common safety ground*
 - Use circuit protected by a ground-fault interrupter

Safety Concepts 3 of 14

Fuses & Circuit Breakers

- *Interrupts power* in case of an overload
- Always replace fuses with *same type and rating*
- Putting a 20A fuse in place of a 5A fuse can cause a *fire* from excessive current flow
- Always include fuse or circuit breaker in home-made equipment
- Fuses in 120V AC powered equipment are used in the "hot" lead.

Working on Equipment

Disconnect from power **Capacitors** in power supplies can *store charge and shock you* – even when disconnected!!!

Work with one hand

Safety Concepts 5 of 14

Battery Safety

• 12V Lead-Acid Battery Hazards Explosive gas can collect if not vented

Shorting terminals can cause burns, fire, explosion

If charged/discharged too quickly – can overheat and give off flammable gas or explode

• If power is out, re-charge 12V battery by connecting to car battery and running the engine (in a well ventilated area)

Safety Concepts 6 of 14

Antenna Safety: Installation

- Look for and stay clear of overhead electrical wires
- Keep 10ft of clearance to power lines, even if the antenna should fall
- Never use a utility pole as a support

What's wrong in this picture?

Safety Concepts 7 of 14

Antenna Placement

- Position antenna so no one can come in contact when transmitting
- RF burns can be painful and dangerous

Safety Concepts 8 of 14

Tower Work

- Use a **gin pole** to lift tower sections or antennas
- Always use **climbing harness**
- *Everyone* at the site wears hard hat and safety glasses
- Never climb alone
- Crank-up towers must be fully *retracted* before climbing
- Use safety wires in turnbuckles to tension guy lines to prevent loosening

Safety Concepts 9 of 14

Tower Grounding

- Very important the tower is a *big lightning rod!*
- Local electrical codes should be consulted
- Separate 8' ground rods per tower leg is good practice
- Bond all legs and rods together
- Short / direct connections
- Avoid sharp bends
- All feedline lightning protection devices should be mounted to a common plate and connected to an external ground

Safety Concepts 10 of 14

RF Exposure

- When using high power:
 - you are *required* to perform an **RF Exposure evaluation**
 - even though VHF & UHF are **non-ionizing radiation** (ionizing radiation can cause genetic damage)
- On *VHF* you can run up to **50W PEP** at the antenna without performing an exposure evaluation
- RF Exposure Evaluation can be performed:
 - Calculation based on FCC OET Bulletin 65
 - Calculation based on computer modeling
 - By measurement of field strength using calibrated equipment

Safety Concepts 11 of 14

RF Exposure: Duty Cycle

- Percentage of time the transmitter is transmitting
- **Duty Cycle** is factored into exposure because affects the *average exposure level*

Safety Concepts 12 of 14

RF Exposure Limits

- Vary with Frequency
- The human body absorbs more energy at some frequencies than others
- The 50MHz band has the lowest Maximum Permitted Exposure Limit

Factors that Affect Exposure:

- Frequency & Power level of RF Field
- Distance from antenna to person
- Radiation pattern of antenna

Safety Concepts 13 of 14

Keeping Exposure Safe

- Relocate antennas
- Lower power levels
- Transmit less
 - Re-evaluate if you make any changes in station or antenna setup

Electrical Safety Chapter End

Questions?

Let's Practice for the Exam!

Radio Practices & Station Setup (RPSS)

- Station Setup
- Operating Controls

Radio Practices & Station Setup (RPSS)

- Station accessories
- Dealing with Interference
- Grounding
- Operating controls
- Station Equipment
- Troubleshooting
- Repair & Testing

Radio Practices & Station Setup 1 of 11

Station Accessories

• Power Supply

- Use *heavy gauge wire* to avoid voltage drop that would prevent proper operation
- Minimum current capacity:

Transmitter efficiency, receiver and control circuit power, regulation and heat dissipation

- Headphones
 - Helps copy in *noisy areas*
- Microphone
 - Rig connector includes push-totalk and maybe power for mic

Radio Practices & Station Setup 2 of 11

Computer in the Hamshack

- Logging contacts
- Looking up info

- Sending and receiving CW
- Generating and decoding digital signals

Radio Practices & Station Setup 3 of 11

Digital Mode Accessories

Packet

- requires pins 2,3,7 (DB-25)
- Basic connection only requires speaker and mic plugs

Antenna

- Terminal Node Controller (TNC)
- Converts 1's and 0's to audio tones
- RTTY or PSK31, etc.
 - Sound card often performs TNC/modem function
 - Provides audio to microphone input, converts received audio to digital
 - Often an audio interface is used to adjust audio levels and provide some ground isolation Radio Practices & Station Setup 4 of 11

Interference Killers

• Ferrite chokes

- Help eliminate stray RF from audio, power supply and other cables
- Reduce RF flowing on shield of audio cables
- Low Pass Filter
 - Used between the transmitter and antenna to eliminate harmonic emissions

Radio Practices & Station Setup 5 of 11

More Interference Killers

- TV Interference
 - *Band-Reject* filter at TV input
 - Helps prevent overload from nearby transmitter

Radio Practices & Station Setup 6 of 11

Grounding helps too...

- Flat strap is best
- Connect all equipment to a common ground
- Car installations
 - Radio ground connection to chassis or engine block strap
 - Bond all grounds

Radio Practices & Station Setup 7 of 11

More Car Installation Tips

- Positive supply
 - Direct to battery
 - Unused fusebox terminal
- Alternator noise/whine
 - Varies with RPM
 - Filters help
- Ignition noise
 - Pulsing/ticking
 - Noise Blanker helps

Radio Practices & Station Setup 8 of 11

Operating Controls

RIT: *Receive Incremental Tuning* used to fine tune receive frequency (not transmit frequency). Sometimes called *Clarifier.* Helpful if a SSB signal is high or low pitched.

AF: Audio Frequency gain – just a fancy name for Volume control

AGC: Keeps received audio relatively constant

Sets RF power output

Microphone Gain: too high and your signal will be distorted

Adjusts Receiver gain

Squelch: *mutes the receiver when no signal is being received. Don't set it too high, or you'll miss weak signals!*

Radio Practices & Station Setup 9 of 11

Operating Controls (cont'd)

HF Transceivers often have a selection of filters which *permits noise or interference reduction by selecting a filter bandwidth that matches the mode.*

Examples: 2400Hz for SSB 500Hz for CW

Operating Frequency is set by VFO knob

Favorite frequencies can be stored in a memory channel for easy access

Radio Practices & Station Setup 10 of 11

Operating Controls

Offset Frequency: the difference between a repeater's transmit and receive frequencies

The transceiver's offset is set by an Offset or Shift control.

The REVerse control toggles between transmit and receive frequencies

Radio Practices & Station Setup 11 of 11

Radio Practices & Station Setup Chapter End

Questions?

Let's Practice for the Exam!