Amateur Radio Technician Class Training

Slideset created by Alan Wolke, W2AEW Permission granted for use by the MORE Project

Based on the No-Nonsense Technician Class Study Guide by Dan Romanchik, KB6NU

Updates by Rebecca Mercuri, Ph.D., K3RPM

Welcome to Session 2

Any Questions Before We Start?

Agenda

- Introduction
- Radio Wave Characteristics (RWC)
- Electronic Components and Circuits (ECCD)
- Electrical PrincIples (EP)
- Antennas and Feed Lines (AFL)
- Amateur Radio Signals (ARS)
- Electrical Safety (ES)
- Radio Practices and Station Setup (RPSS)
- Station Equipment (SE)
- Operating Procedures (OP)
- Rules and Regulations (RR)

Electronic Components \& Circuit Diagrams (ECCD)

- Resistors, Capacitors, ...
- Semiconductors
- Circuit Diagrams
- Other Components

Electronic Components \& Circuit Diagrams (ECCD)

These are just examples -only need to memorize the circuits and components on slides 16, 17, 18 in this set

Components and Circuits 1 of 19

Resistors

Passive Components

- Resistors oppose the flow of current
- Variable resistors are called Potentiometers (or Rheostats)
- Resistor value expressed in ohms

Components and Circuits 2 of 19

Capacitors

Passive Components

- Two conductors separated by an insulator (or dielectric) is a Capacitor

Electrolytic
Variable

- Stores energy in an electric field
- Capacitance is the ability to store energy in an electric field
- The unit of measure is the Farad

Components and Circuits 3 of 19

Inductors
 Passive Components

－An inductor stores energy in a magnetic field
－Often just a coil of wire！
－The ability to store energy in a magnetic field is called Inductance
－Unit of measure is Henry

Fixed－value		Iron core
ふे		令 \＃
Variable	Variac	Tapped
名	ふै	-శ

Switches
 Passive Components

- Used to connect and disconnect electrical circuits
- Pole: "movable part"
- Throw: where the pole can

Generic
Symbols

Push Button
Switches

0 OPOT get moved to

- SPST: single-pole, singlethrow

- DPDT: double-pole, doublethrow

Fuses
 Passive Components

- Protects circuits from overload (excessive current)
- "Blown" fuse - breaks and has to be replaced, but circuit should be checked first to see what
 caused the overload

- Rated in Amps

Batteries

Primary batteries are not rechargeable:
Carbon Zinc, Alkaline
Secondary batteries are rechargeable:

NiCad, NiMH, Lithium-ion, LiFePO4
Different types have different voltages

NiCad typically 1.2V

Diodes
 Semiconductors

- Allows current to flow in only one direction
- Terminals are:

Anode (+)
Cathode (-)

- Cathode has the stripe
- Often called Rectifier

Name	Symbol	Image
Diode		
Zener Diode		
LED (Light Emitting Diode)		
Schottky		
Diode		

Components and Circuits 8 of 19

Light Emitting Diodes (LEDs)
 Semiconductors

- A diode that creates light when
 current passes through it
- Commonly used as a visual indicator

Transistors
 Semiconductors

- Component where current flow is controlled by another current or voltage
- Used as a switch or amplifier
- Gain is a measure of the ability to amplify

- Ratio of output to input current (for example)

Some Transistor Types

- Bipolar transistors are made of three layers of semiconductor

NPN or PNP

- Terminals are:

Base

Collector
Emitter

Components and Circuits 11 of 19

More Transistor Types

Field Effect Transistor (FET)

- Current is controlled by voltage on the Gate
- Terminals are:

Gate

Drain
Source

Components and Circuits 12 of 19

Schematic Symbols

Examples of Circuit Diagrams (do not memorize this page)

Schematic Symbols Used in Circuit Diagrams

Components and Circuits 13 of 19

Schematic Symbols

Circuit Diagrams

- Schematic symbols are standardized representations for components
-1 Diode
H1 Capacitor
mol Inductor
- W- Resistor
- Schematic diagram depicts the interconnections between components that make up a circuit

Schematic Diagrams

Circuit Diagrams

Components and Circuits 15 of 19

Schematic Diagram Examples

Circuit Diagrams - Need to Memorize

1: Resistor, used to limit input current
2: Transistor, controls the flow of current through the lamp
3: Lamp
4: Battery, supplies current to light the lamp

5: Ground to chassis

Turns on a light when a positive voltage is applied to the input

Schematic Diagram Examples

Circuit Diagrams - Need to Memorize
1: Power Connector
2: Fuse
3: Single Pole, Single Throw switch (SPST) to turn the power supply on/off

4: Transformer, used to change 120VAC to lower AC voltage

5: Rectifier diode to change $A C$ to a

Figure 12
Simple AC - DC Power Supply varying DC signal

6: Capacitor helps to remove the 60 Hz variation in the signal (filter)
7. Resistor

8: LED - pilot light to show it is on
9: Variable Resistor to vary the output current

Components and Circuits 17 of 19

Schematic Diagram Examples

Circuit Diagrams - Need to Memorize

2: Variable Capacitor
3: Variable Inductor
The variable capacitors together with the variable inductor together create a tuned circuit

Capacitors and inductors connected together are often
filters or tuned/resonant circuits
4: Antenna

Other Components

Circuit Diagrams

Relay: a switch controlled by an electromagnet
Meter: used to display a electrical quantity on a numeric scale

Shielded Wire: prevents coupling of unwanted signals to/from the wire
Regulator: controls the amount of voltage from a power supply

Integrated Circuit: combines many parts in one package, performs analog and/or digital functions

Electronic Components \& Circuit Diagrams Chapter End

Questions?

Let's Practice for the Exam!

Electrical Principles (EP)

- Units and Terms
- Ohm's Law
- Series \& Parallel
- DC Power
- Math
- Decibels

Why Do We Start With Electrical Principles?

- While Hams can operate amateur radios "out of the box" without modifications, it is important to know the underlying electrical fundamentals
- Designing, building and repairing amateur radio components is also an interest of many Hams
- This knowledge is required by the FCC -- the formulas we provide here will help you answer the exam questions on these topics
- This information is covered first in the MORE Course so that you will have the longest amount of time to review and remember it

Electrical Principles 0 of 22

Electrical Principles (EP)

Electrical Principles 1 of 22

Voltage

- The force that pushes electrons around
- Also called Electro-Motive Force: EMF
- Measured in units called VOLTS
- Measured with a Voltmeter
- Symbol is \mathbf{E}, unit symbol is \mathbf{V}
- Typical mobile radios require 12 volts to operate

Current

- The flow of electrons in a circuit
- Measured in units of Amperes (amps)
- Symbol is I, units symbol is A
- Measured with an Ammeter
- DC: Direct Current flows in one direction
- AC: Alternating Current flows back and forth, changing direction on a regular basis

AC = Alternating Current

Frequency: number of times per second that an alternating current makes a complete cycle
Hertz: Unit of frequency

Electrical Principles 4 of 22

Resistance

- Opposes the flow of electrons
- Higher resistance -> smaller current
- Measured in Ohms
- Symbol is \boldsymbol{R} Unit symbol is $\boldsymbol{\Omega}$
- Measured with an Ohmmeter

Conductors \& Insulators

- Conductors

- Low resistance, allow current to flow
- Copper, aluminum, gold, silver, etc.
- Insulators
- High resistance, little/no current flow
- Plastic, wood, glass, mica, paper, etc.

Power

- Rate at which electrical energy is used
- Measured in Watts
- Symbol is \mathbf{P} Unit symbol is \mathbf{W}
- Often not measured directly, but calculated more on this shortly...

Summary of Terms

- EMF (E) is measured in Volts (V)
- Current (I) is measured in $\operatorname{Amps}(A)$
- Resistance (R) is measured in Ohms (Ω)
- Power (P) is measured in Watts (W)

Memorize this!

Ohm's Law

Relationship between:

- Voltage
- Current

(V) $=I \times R$
(I) $=\frac{V}{R}$
(R) $=\frac{V}{I}$
- Resistance

Voltage = Current x Resistance
$E=I \times R$
$I=E / R$
$\mathrm{R}=\mathrm{E} / \mathrm{I}$

Electrical Principles 9 of 22

Ohm's Law Calculations
using the "magic" Formula circle to do math.

TOP TO BOTTOM DIVIDE.
Such As:

$$
\begin{aligned}
& 12 \div 8=1.5 \\
& 12 \div 1.5=8
\end{aligned}
$$

SIDE TO SIDE MULTIPLY.

such As:

$$
\begin{aligned}
& 8 \times 1.5=12 \\
& 1.5 \times 8=12
\end{aligned}
$$

Ohm's Law Examples

- 90 volts is applied across a resistor resulting in 3 amperes of current. What's the resistance?

$$
R=E / I \quad 90 V / 3 A=30 \Omega
$$

- 12 volts applied to a circuit with 8 ohms of resistance - how much current flows?

$$
\mathrm{I}=\mathrm{E} / \mathrm{R} \quad 12 \mathrm{~V} / 8 \Omega=1.5 \text { amperes }
$$

- 2 A flowing through 10Ω resistor - what voltage appears across the resistor?

$$
E=I \times R \quad 2 A \times 10 \Omega=\mathbf{2 0} \text { Volts }
$$

Electrical Principles 11 of 22

Series and Parallel Circuits

- Series: devices are end-to-end

- Parallel: devices are next to each other

Electrical Principles 12 of 22

Series Circuits

- There is one path for current to flow
- Current is:
- the same through all components
- is unchanged at component junctions
- Voltage across each component is determined by type and value of each component.
- Sum of voltages across components equals the voltage source

Electrical Principles 13 of 22

Parallel Circuits

- Each component connected to voltage source (in this example)
- Voltage across each component is the same
- Current divides at component junctions, dependent on component values
- Sum of currents in each component equals total current from the source

Electrical Principles 14 of 22

Calculating Power

Relationship between:

- Power
- Voltage
- Current

Power is Voltage x Current $P=E \times I$
$E=P / I$
$I=P / E$

$\left(\mathbf{P}=\mathrm{I} \times \mathrm{V} \quad \mathbf{I}=\frac{\mathrm{P}}{\mathrm{V}} \quad \mathbf{V}=\frac{\mathrm{P}}{\mathrm{I}}\right.$

Power Law Calculations
using the "magic" Formula circle to do math.

TOP TO BOTTOM DIVIDE. such As:

$$
\begin{aligned}
& 138 \div 10=13.8 \\
& 138 \div 13.8=10
\end{aligned}
$$

SIDE TO SIDE MULTIPLY.

$$
\begin{aligned}
& 13.8 \times 10=138 \\
& 10 \times 13.8=138
\end{aligned}
$$

Power Examples

- How much power is being used by a circuit that draws 10A from a 13.8 V source?

$$
P=E x I \quad 13.8 \mathrm{~V} * 10 \mathrm{~A}=\mathbf{1 3 8} \text { Watts }
$$

- Applied voltage is 12 V and current is 2.5 A , what is the power?

$$
P=E \times I \quad 12 \mathrm{~V} \times 2.5 \mathrm{~A}=30 \mathrm{~W}
$$

- With 12 V applied and 120 W used, what is the current?

$$
\mathrm{I}=\mathrm{P} / \mathrm{E} \quad 120 \mathrm{~W} / 12 \mathrm{~V}=10 \mathrm{~A}
$$

Electrical Principles 17 of 22

Math for Electronics: Prefixes

Used with electrical quantities
milli $=1 / 1000$ th, such as $1 \mathbf{m A}$ is $1 / 1000$ th of an ampere, or 0.001A
micro $=1 / 1,000,000$ th (one millionth), such as $3 \mu \mathrm{~V}$ which is 0.000003 V
pico $=1$ trillionth (millionth of a millionth) such as $5 p A=0.000005 \mu \mathrm{~A}$

Electrical Principles 18 of 22

Prefixes continued

kilo $=1000 x$, such as $1 \mathbf{k V}=1000 \mathrm{~V}$ mega $=1$ million times ($1,000,000 \mathrm{x}$) such as $1 \mathbf{M} \Omega=1,000,000 \Omega$ giga $=1$ billion times, such as $\mathbf{2 . 4 G H z}$

Prefixes are often used on many different electrical quantities

Prefix Examples

- 1,500 milliamperes $=1.5$ amperes
- 1,000 volts $=1$ kilovolt (1 kV)
- 1 millionth of a volt = 1 microvolt $(1 \mu \mathrm{~V})$
- $3000 \mathrm{~mA}=3 \mathrm{~A}$
- 3500 kilohertz $=3.5$ megahertz $(\mathbf{M H z})$
- $2425 \mathrm{MHz}=2.425 \mathrm{GHz}$

Decibels (dB)

- When dealing with loudness and power ratios we use decibels
- Easy to express large ratios with small numbers
- Decibels use a logarithmic (log) scale
- Cascading ratios multiply or divide but cascading decibels add or subtract
- +dB represents an "increase"
- dB represents a "decrease"

Electrical Principles 21 of 22

Decibel Ratios to Remember

- $\mathbf{3 d B}$ is a factor of $\mathbf{2 x}$

A change from 5 W to 10 W is a 3 dB increase, a ratio of 2 to 1

- $\mathbf{6 d B}$ is a factor of $\mathbf{4 x}$

A change from 12 W to 3 W is a 6 dB decrease (-6 dB change), ratio of 4 to 1

- $\mathbf{1 0 d B}$ is a factor of $\mathbf{1 0 x}$

20 W to 200 W is a 10 dB increase, ratio of 10 to 1

- Combinations (dB values add and subtract)

13 dB change is a factor of $20 \times(10 \times 2)$
Electrical Principles 22 of 22

Electrical Principles Chapter End

Questions?

Let's Practice for the Exam!

