Amateur Radio Technician Class Training

Slideset created by Alan Wolke, W2AEW Permission granted for use by the MORE Project

Based on the No-Nonsense Technician Class Study Guide by Dan Romanchik, KB6NU

Updates by Rebecca Mercuri, Ph.D., K3RPM

Welcome to Session 2

Any Questions Before We Start?

Agenda

- Introduction
- Radio Wave Characteristics (RWC)
- Electronic Components and Circuits (ECCD)
- Electrical Principles (EP)
- Antennas and Feed Lines (AFL)
- Amateur Radio Signals (ARS)
- Electrical Safety (ES)
- Radio Practices and Station Setup (RPSS)
- Station Equipment (SE)
- Operating Procedures (OP)
- Rules and Regulations (RR)

<section-header>

Electronic Components & Circuit Diagrams (ECCD)

- Resistors, Capacitors, ...
- Semiconductors
- Circuit Diagrams
- Other Components

Electronic Components & Circuit Diagrams (ECCD)

Others

These are just examples -only need to memorize the circuits and components on slides 16, 17, 18 in this set

Resistor Vari Res				Thermistor	
¢	} [+	} ∲-	}	-⊈- -∽~-	
Cap	trolytic Trii bacitor ∺ ↓ Variable	Cap	I Variable acitors ¥	Phot	ocell
Air Wou Coils لا	Core C		Variable Inductor ↓€		
Transformer ⁽ ∃∭È	Centre Tappe Transformer 3∭È	d IFT	Variable %	PIFT ≻	
Dynamic MIC O	ECM MIC		Pie 		ooomnz
Indicator	Lamps Ø	Motor -(M)	Voltrr –(v	neter Terminal Test Poir)— ⊶	
Battery †il⊦	Relay	Alternative Relay Conta		se Stereo J	ack
Switch	SPDT Switch q qq	Rotary Switch	Push Butto	NC PE	-
Aerial	Earth -±	Chassis	Wires (J	loined) (Not Jo	oined)

Components and Circuits 1 of 19

Resistors

Passive Components

- **Resistors** oppose the flow of current
- Variable resistors are called **Potentiometers** (or **Rheostats**)
- Resistor value expressed in **ohms**

Components and Circuits 2 of 19

Capacitors Passive Components

- Two conductors separated by an insulator (or dielectric) is a Capacitor
- Stores energy in an electric field
- Capacitance is the ability to store energy in an electric field
- The unit of measure is the **Farad**

Components and Circuits 3 of 19

Inductors Passive Components

- An inductor stores energy in a *magnetic* field
- Often just a coil of wire!
- The ability to store energy in a magnetic field is called **Inductance**
- Unit of measure is Henry

Components and Circuits 4 of 19

Switches Passive Components

- Used to connect and disconnect electrical circuits
- Pole: "movable part"
- **Throw**: where the pole can get moved to
- SPST: single-pole, singlethrow
- DPDT: double-pole, doublethrow

Components and Circuits 5 of 19

- Protects circuits from overload (excessive current)
- "Blown" fuse breaks and has to be replaced, but circuit should be checked first to see what caused the overload
- Rated in **Amps**

Components and Circuits 6 of 19

Batteries

Primary batteries are not rechargeable: Carbon Zinc, Alkaline **Secondary** batteries are rechargeable: NiCad, NiMH, Lithium-ion, LiFePO4 Different types have different voltages NiCad typically 1.2V

Components and Circuits 7 of 19

- Allows current to flow in only one direction
- Terminals are: *Anode (+) Cathode (-)*
- Cathode has the stripe
- Often called **Rectifier**

Components and Circuits 8 of 19

Light Emitting Diodes (LEDs)

- A diode that creates light when current passes through it
- Commonly used as a *visual indicator*

Components and Circuits 9 of 19

Transistors Semiconductors

- Component where *current* flow is controlled by another *current or voltage*
- Used as a *switch* or *amplifier*
- **Gain** is a measure of the ability to amplify
- Ratio of output to input current (for example)

Components and Circuits 10 of 19

Some Transistor Types

• **Bipolar transistors** are made of *three layers* of semiconductor

NPN or PNP

Terminals are:
 Base
 Collector
 Emitter

Components and Circuits 11 of 19

More Transistor Types

Field Effect Transistor (FET)

- Current is controlled by voltage on the Gate
- Terminals are:

Gate Drain Source

Components and Circuits 12 of 19

Schematic Symbols Examples of Circuit Diagrams (do not memorize this page)

Components and Circuits 13 of 19

Schematic Symbols Circuit Diagrams

- Schematic symbols
 are standardized
 representations for
 components
- Schematic diagram depicts the *interconnections* between components that make up a circuit

Components and Circuits 14 of 19

Schematic Diagrams

Circuit Diagrams

Components and Circuits 15 of 19

Schematic Diagram Examples

Circuit Diagrams – Need to Memorize

- 1: **Resistor**, used to limit input current
- 2: **Transistor**, controls the flow of current through the lamp

3: **Lamp**

- 4: **Battery**, supplies current to light the lamp
- 5: Ground to chassis

Turns on a light when a positive voltage is applied to the input

Components and Circuits 16 of 19

Schematic Diagram Examples

Circuit Diagrams – Need to Memorize

- 1: Power Connector
- 2: **Fuse**
- 3: **Single Pole, Single Throw switch** (SPST) to turn the power supply on/off
- 4: **Transformer**, used to change 120VAC to lower AC voltage
- 5: **Rectifier diode** to change AC to a varying DC signal
- 6: **Capacitor** helps to remove the 60Hz variation in the signal (filter)
- 7. Resistor
- 8: **LED** pilot light to show it is on
- 9: Variable Resistor to vary the output current

Simple AC – DC Power Supply

Components and Circuits 17 of 19

Schematic Diagram Examples

Circuit Diagrams – **Need to Memorize**

2: Variable Capacitor

3: Variable Inductor

The variable capacitors together with the variable inductor together create a *tuned circuit*

Capacitors and inductors connected together are often filters or tuned/resonant circuits

4: Antenna

Output circuit of a transmitter

Components and Circuits 18 of 19

Other Components Circuit Diagrams

Relay: a switch controlled by an electromagnet

- **Meter**: used to display a electrical quantity on a numeric scale
- **Shielded Wire**: prevents coupling of unwanted signals to/from the wire
- **Regulator**: controls the amount of voltage from a power supply
- **Integrated Circuit**: combines many parts in one package, performs analog and/or digital functions

Components and Circuits 19 of 19

Electronic Components & Circuit Diagrams Chapter End

Questions?

Let's Practice for the Exam!

Electrical Principles (EP)

- Units and Terms
- Ohm's Law
- Series & Parallel
- DC Power
- Math
- Decibels

Why Do We Start With Electrical Principles?

- While Hams can operate amateur radios "out of the box" without modifications, it is important to know the underlying electrical fundamentals
- Designing, building and repairing amateur radio components is also an interest of many Hams
- This knowledge is required by the FCC -- the formulas we provide here will help you answer the exam questions on these topics
- This information is covered first in the MORE Course so that you will have the longest amount of time to review and remember it

Electrical Principles 0 of 22

Electrical Principles (EP)

Electrical Principles 1 of 22

Voltage

- The force that pushes electrons around
- Also called <u>Electro-Motive</u> Force: **EMF**
- Measured in units called VOLTS
- Measured with a Voltmeter
- Symbol is **E**, unit symbol is **V**
- Typical mobile radios require 12 volts to operate

Electrical Principles 2 of 22

Current

- The *flow of electrons* in a circuit
- Measured in units of Amperes (amps)
- Symbol is I, units symbol is A
- Measured with an Ammeter
- **DC**: Direct Current flows in one direction
- AC: Alternating Current flows back and forth, changing direction on a regular basis

Electrical Principles 3 of 22

AC = Alternating Current

Frequency: number of times per second that an alternating current makes a complete cycle

Hertz: Unit of frequency

Electrical Principles 4 of 22

Resistance

- Opposes the flow of electrons
 - Higher resistance -> smaller current
- Measured in **Ohms**
- Symbol is R Unit symbol is Ω
- Measured with an **Ohmmeter**

Electrical Principles 5 of 22

Conductors & Insulators

Conductors

- Low resistance, allow current to flow
- Copper, aluminum, gold, silver, etc.

Insulators

- High resistance, little/no current flow
- Plastic, wood, glass, mica, paper, etc.

Electrical Principles 6 of 22

- *Rate* at which electrical energy is used
- Measured in Watts
- Symbol is **P** Unit symbol is **W**

• Often not measured directly, but calculated – *more on this shortly...*

Electrical Principles 7 of 22

Summary of Terms

- EMF (E) is measured in Volts (V)
- Current (I) is measured in Amps (A)
- Resistance (R) is measured in Ohms (Ω)
- Power (P) is measured in Watts (W)

Memorize this!

Electrical Principles 8 of 22

Ohm's Law

Relationship between:

- Voltage
- Current
- Resistance
- Voltage = Current x Resistance
 - $E = I \times R$ I = E / R
 - R = E / I

Electrical Principles 9 of 22

Ohm's Law Calculations

USING THE "MAGIC" FORMULA CIRCLE TO DO MATH.

Top To Bottom DIVIDE. Such As: $12 \div 8 = 1.5$ $12 \div 1.5 = 8$ SIDE TO SIDE <u>MULTIPLY</u>. Such As: $8 \times 1.5 = 12$ $1.5 \times 8 = 12$

Electrical Principles 10 of 22

Ohm's Law Examples

 90 volts is applied across a resistor resulting in 3 amperes of current. What's the resistance?

R = E / I 90V/3A = **30** Ω

 12 volts applied to a circuit with 8 ohms of resistance – how much current flows?

I = E / R 12V/8 Ω = **1.5 amperes**

2A flowing through 10Ω resistor – what voltage appears across the resistor?

 $E = I \times R$ 2A × 10 Ω = **20 Volts** Electrical Principles 11 of 22

Series and Parallel Circuits

are end-to-end

• Series: devices • Parallel: devices are next to each other

Electrical Principles 12 of 22

Series Circuits

- There is *one path* for current to flow
- Current is:
 - the *same through all components*
 - is *unchanged* at component junctions
- Voltage across each component is determined by type and value of each component.
- Sum of voltages across components equals the voltage source

Electrical Principles 13 of 22

Parallel Circuits

- Each component connected to voltage source (in this example)
- Voltage across each component is the *same*
- **Current** <u>divides</u> at component junctions, dependent on component values
- Sum of currents in each component equals total current from the source

Electrical Principles 14 of 22

Calculating Power

Relationship between:

- Power
- Voltage
- Current

Power is Voltage x Current

 $P = E \times I$ E = P / II = P / E

Electrical Principles 15 of 22

Power Law Calculations

USING THE "MAGIC" FORMULA CIRCLE TO DO MATH.

TOP TO BOTTOM DIVIDE. SUCH AS: $138 \div 10 = 13.8$ $138 \div 13.8 = 10$ SIDE TO SIDE MULTIPLY. $13.8 \times 10 = 138$ $10 \times 13.8 = 138$

Electrical Principles 16 of 22

Power Examples

• How much power is being used by a circuit that draws 10A from a 13.8V source?

 $P = E \times I$ 13.8V * 10A = **138 Watts**

• Applied voltage is 12V and current is 2.5A, what is the power?

 $P = E \times I$ 12V × 2.5A = **30W**

• With 12V applied and 120W used, what is the current?

I = P / E 120W / 12V = **10 A**

Electrical Principles 17 of 22

Math for Electronics: Prefixes

Used with electrical quantities

milli = 1/1000th, such as 1**mA** is 1/1000th of an ampere, or 0.001A

micro = 1/1,000,000th (one millionth), such as 3**µV** which is 0.000003V

pico = 1 trillionth (millionth of a millionth)
 such as 5pA = 0.00005µA

Electrical Principles 18 of 22

Prefixes continued

kilo = 1000x, such as 1kV = 1000V
mega = 1 million times (1,000,000x) such as 1MΩ = 1,000,000Ω
giga = 1 billion times, such as 2.4GHz

Prefixes are often used on many different electrical quantities

Electrical Principles 19 of 22

Prefix Examples

- 1,500 milliamperes = 1.5 amperes
- 1,000 volts = 1 kilovolt (1kV)
- 1 millionth of a volt = 1 microvolt (1µV)
- 3000mA = 3A
- 3500 kilohertz = 3.5 megahertz (MHz)
- 2425 MHz = 2.425 GHz

Electrical Principles 20 of 22

Decibels (dB)

- When dealing with loudness and power ratios we use decibels
- Easy to express large ratios with small numbers
- Decibels use a logarithmic (log) scale
- Cascading ratios multiply or divide but cascading decibels add or subtract
- +dB represents an "increase"
 -dB represents a "decrease"

Electrical Principles 21 of 22

Decibel Ratios to Remember

• **3dB** is a factor of **2x**

A change from 5W to 10W is a 3dB increase, a ratio of 2 to 1

• **6dB** is a factor of **4x**

A change from 12W to 3W is a 6dB decrease (-6dB change), ratio of 4 to 1

- **10dB** is a factor of **10x**20W to 200W is a 10dB increase, ratio of 10 to 1
- Combinations (dB values add and subtract) 13dB change is a factor of 20x (10 x 2)

Electrical Principles 22 of 22

Electrical Principles Chapter End

Questions?

Let's Practice for the Exam!